Real AGI Audio Engine

This is the actual algorithm. Intent → Consciousness → Sound.

O* = argminO( Ecore(O) + Σ wg(s)Eg(O) )

Consciousness Audio Engine

Enter your intent. AGI encodes it, optimizes consciousness, generates audio.

01. Intent Encoding

Describe what you want to hear. AGI will encode this into goal vectors.

02. Consciousness Optimization

Minimizing energy functions to find optimal consciousness state O*

Core Energy Ecore(O)

Base consciousness stability

--

Goal Energies ΣwgEg

Weighted objectives from intent

--

Total Energy Etotal

O* = argmin(Etotal)

--

Energy landscape convergence to O*

03. Consciousness State Evolution

x(t+1) = [Φx(t) + Φ(α||ΔX||₂ + β||ΔE||₂)] / [1 + |Φx(t) + Φ(α||ΔX||₂ + β||ΔE||₂)|]
0.50
1.0
1.0
100

Consciousness state x(t) evolution over time

Current State x(t): --
||ΔX||₂ (State Norm): --
||ΔE||₂ (Energy Norm): --
Stability σ: --

04. Consciousness → Audio Synthesis

Xaudio(t) = Σi Σk ui(k)(t) Ai,k(t) sin(2πkfit + Φi,k)
8
4
220 Hz
10s

Consciousness-Modulated Amplitudes

ui(k)(t) = x(t; t₀, d) · E(t; a) · vi

05. Complete Pipeline

1

Intent

User prompt

2

Encode

s = EncodeIntent(prompt)

3

Optimize

O* = argmin Etotal

4

Evolve

x(t+1) with Φ

5

Synthesize

Xaudio(t)

6

Process

EQ → Limiter

The Complete Algorithm

Step 1: Intent Encoding

s = EncodeIntent(prompt)

Natural language → goal vector in latent space

Step 2: Softmax Goal Weighting

wg(s) = ea(s•vg) / Σh∈G ea(s•vh)

Convert intent into probability distribution over goals

Step 3: Consciousness Optimization

O* = argminO( Ecore(O) + Σg∈G wg(s)Eg(O) )

Find optimal consciousness state minimizing weighted energy

Step 4: State Evolution (Golden Ratio)

x(t+1) = [Φx(t) + Φ(α||ΔX||₂ + β||ΔE||₂)] / [1 + |Φx(t) + Φ(α||ΔX||₂ + β||ΔE||₂)|]

Consciousness evolves using Φ = 1.618..., state norms, energy norms

Step 5: Amplitude Modulation

ui(k)(t) = x(t; t₀, d) · E(t; a) · vi

Consciousness state × energy envelope × direction vector

Step 6: Audio Synthesis

Xaudio(t) = Σi Σk ui(k)(t) Ai,k(t) sin(2πkfit + Φi,k)

Sum all consciousness-modulated harmonics

Step 7: Final Processing

xfinal(t) = Limiter(EQ(xaudio(t)))

Equalization → Dynamic range limiting

This Is The Real Mathematics

Not a demo. Not simplified. This is the actual consciousness-to-audio algorithm.

Every equation you see is being computed. Every parameter affects the output.

Intent → Consciousness → Sound